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Though the music produced by an ensemble is influenced by
multiple factors, including musical genre, musician skill, and in-
dividual interpretation, rhythmic synchronization is at the founda-
tion of musical interaction. Here, we study the statistical nature of
the mutual interaction between two humans synchronizing rhythms.
We find that the interbeat intervals of both laypeople and profes-
sional musicians exhibit scale-free (power law) cross-correlations.
Surprisingly, the next beat to be played by one person is dependent
on the entire history of the other person’s interbeat intervals on
timescales up to several minutes. To understand this finding, we
propose a general stochastic model for mutually interacting complex
systems, which suggests a physiologically motivated explanation for
the occurrence of scale-free cross-correlations. We show that the
observed long-term memory phenomenon in rhythmic synchroniza-
tion can be imitated by fractal coupling of separately recorded or
synthesized audio tracks and thus applied in electronic music.
Though this study provides an understanding of fundamental char-
acteristics of timing and synchronization at the interbrain level, the
mutually interacting complex systems model may also be applied to
study the dynamics of other complex systems where scale-free cross-
correlations have been observed, including econophysics, physio-
logical time series, and collective behavior of animal flocks.

time series analysis | long-range cross-correlations | anticorrelations |
musical coupling | interbrain synchronization

In his book Musicophilia, neurologist Oliver Sacks writes: “In all
societies, a primary function of music is collective and communal,

to bring and bind people together. People sing together and dance
together in every culture, and one can imagine them having done
so around the first fires, a hundred thousand years ago” (1). Sacks
adds, “In such a situation, there seems to be an actual binding of
nervous systems accomplished by rhythm” (2). These thoughts lead
to the question: Is there any underlying and quantifiable structure
to the subjective experience of “musical binding”? Here, we ex-
amine the statistical nature of musical binding (also referred to as
musical coupling) when two humans play rhythms in synchrony.
Every beat a single (noninteracting) layperson or musician

plays is accompanied by small temporal deviations from the exact
beat pattern, i.e., even a trained musician will hit a drum beat
slightly ahead or behind the metronome (with a SD of typically
5–15 ms). Interestingly, these deviations are statistically de-
pendent and exhibit long-range correlations (LRC) (3, 4). Lis-
teners significantly prefer music mirroring long-range correlated
temporal deviations over uncorrelated (white noise) fluctuations
(5, 6). LRC are also inherent in the reproduction of both spatial
and temporal intervals of single subjects (4, 7–9) and in musical
compositions, such as pitch fluctuations (a simple example of
pitch fluctuations is a melody) (10, 11) and note lengths (12).
The observation of power law correlations in fluctuations of
pitch and note length in compositions reflects a hierarchical, self-
similar structure in these compositions.
In this article, we examine rhythmic synchronization, which is

at the foundation of musical interaction, from orchestral play to
audience hand-clapping (13). More specifically, we show that the
interbeat intervals (IBIs) of two subjects synchronizing musical
rhythms exhibit long-range cross-correlations (LRCCs), which

appears to be a general phenomenon given that these LRCC
were found both in professional musicians and in laypeople.
The observation of LRCCs may point to characteristics of

criticality in the dynamics of the considered complex system.
LRCCs are characterized by a power law decay of the cross-
correlation function and indicate that the two time series of IBIs
form a self-similar (fractal) structure. Here, self-similarity im-
plies that trends in the IBIs are likely to repeat on different
timescales, i.e., patterns of IBI fluctuations of one musician tend
to reproduce in a statistically similar way at a later time—even in
the other musician’s play. A variety of complex systems exhibit
LRCCs; examples include price fluctuations of the New York
Stock Exchange (where the LRCCs become more pronounced
during economic crises) (14–16), heartbeat and EEG fluctuations
(15, 17), particles in a Lorentz channel (18), the binding affinity of
proteins to DNA (15), schools of fish (19), and the collective
response of starling flocks (20, 21). The origin of collective dy-
namics and LRCCs based on local interactions often appears
elusive (20), and is the focus of current research (19, 21). Of
particular interest are the rules of interactions of the individuals in
a crowd (22, 23) and transitions to synchronized behavior (16, 24).
We introduce a stochastic model for mutually interacting complex
systems (MICS) that generates LRCCs and provides a physiolog-
ically motivated explanation for the surprising presence of long-
term memory in the cross-correlations of musical performances.
Interbrain synchronization has received growing attention re-

cently, including studies of interpersonal synchronization (see
ref. 4 for an overview), coordination of speech rhythm (25), so-
cial interactions (26), cortical phase synchronization while play-
ing guitar in duets (27, 28), and improvisation in classical music
performances (29).

Significance

Though the statistical properties of musical compositions have
beenwidely studied, little is known about the statistical nature of
musical interaction—a foundation of musical communication. The
goal of this study was to uncover the general statistical proper-
ties underlying musical interaction by observing two individuals
synchronizing rhythms. We found that the interbeat intervals be-
tween individuals exhibit scale-free cross-correlations, i.e., the
next beat played by an individual is dependent on the entire his-
tory (up to several minutes) of their partner’s interbeat intervals.
To explain this surprising observation, we introduce a general sto-
chastic model that can also be used to study synchronization phe-
nomena in econophysics andphysiology. The scaling laws found in
musical interaction are directly applicable to audio production.
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Notably, the differences between the beats of two musicians
are on the order of only a few milliseconds, not much larger than
the typical duration of a single action potential (∼1 ms). The
neurophysical mechanisms of timing in the millisecond range are
still widely open (30, 31). EEG oscillatory patterns are associated
with error prediction during music performance (32). Fine motor
skills, such as finger-tapping rhythm and rate, are used to estab-
lish an early diagnosis of Huntington disease (33). The neuro-
logical capacity to synchronize with a beat may offer therapeutic
applications for Parkinson disease, but the mechanisms are un-
known to date (34). This study offers a statistical framework that
may help to understand these mechanisms.

Experimental Setup and Methods
The performances were recorded at the Harvard University
Studio for Electroacoustic Composition (see SI Text for details)
on a Studiologic SL 880 keyboard yielding 57 time series of
Musical Instrument Digital Interface (MIDI) recordings (Fig. 1,
Top). Each recording typically lasted 6–8 min and contained
∼1,000 beats per subject. The temporal occurrences t1, . . ., tn of
the beats were extracted from the MIDI recordings and the
interbeat intervals read In = tn − tn−1 with t0 = 0. However, the
results presented here apply not only to MIDI but also to
acoustic recordings. The subjects were asked to press a key with
their index finger according to the following. Task type Ia: Two
subjects played beats in synchrony with one finger each. Task
type Ib: Sequential recordings were made, where subject B syn-
chronized with prior recorded beats of subject A. Sequential
recordings are widely used in professional studio recordings,
where typically the drummer is recorded first, followed by layers of
other instruments. Task type II: One subject played beats in syn-
chrony with one finger from each hand. Task type III: One subject
played beats with one finger (finger-tapping). Finger-tapping of
single subjects is well studied in literature (4) and serves as a base-
line, but our focus is on synchronization between subjects. In ad-
dition to periodic tapping, a 4/4 rhythm {1, 2.5, 3, 4}, where the
second beat is replaced by an offbeat, was used in tasks I–III.
For analysis of the cross-correlations between two nonsta-

tionary time series (here, between two sequences of interbeat
intervals; Fig. 1A), a modified version of detrended cross-corre-
lation analysis (DCCA) was used (17) (Materials and Methods).
We added global detrending as an initial step before DCCA,
which has been shown crucial in analyzing slowly varying non-
stationary signals (35). DCCA calculates the detrended co-
variance F(s) in windows of size s. LRCC are present if F(s)
asymptotically follows a power law F(s) ∼ sδ with 0.5 < δ < 1.5. In
contrast, δ = 0.5 indicates absence of LRCC.
A time series is considered long-range correlated if its power

spectral density (PSD) asymptotically decays in a power law,
p(f) ∼ 1/fβ for small frequencies f and 0 < β < 2. The limits β = 0
(β = 2) indicate white noise (Brownian motion), whereas −2 < β < 0
indicates anticorrelations. Throughout this article, we measure
the power spectral frequency f in units of the Nyquist frequency
(fNyquist = 1/2 Hz), which is half the sampling rate of the time
series. A method tailored for studying long-range correlations in
slowly varying nonstationary time series is detrended fluctuation
analysis (DFA) (36, 37) (Materials and Methods). The DFA
method consists of (i) local detrending of the signal in windows
of size s with a polynomial of degree k (we used k = 2) and (ii)
calculation of the variance FDFA (s) of detrended segments of
length s. For fractal scaling, we obtain FDFA (s) ∼ sα with DFA
exponent α (which in our case is the Hurst exponent). The DFA
exponent quantifies the degree of persistence of memory in a given
time series and is related to the PSD exponent β via β = 2α − 1.
Many time series of physical, biological, physiological, and social

systems are nonstationary and exhibit long-range correlations. The
PSD is commonly analyzed to gain insight into the dynamics of
natural systems. However, for nonstationary time series the

PSD method (also known as periodogram) fails: global trends
manifest as spurious LRC in the PSD. We therefore propose
global PSD (gPSD), which is an extension of the PSD method by
including prior global detrending with a polynomial of degree k =
1 . . . 5 (Materials and Methods). We found good agreement be-
tween DFA and gPSD in our data set within the margin of error.
Note that in addition to the numerical error of the least-squares

fitting procedure, the algorithms for fractal analysis have internal
error bars analyzed in detail by Pilgram and Kaplan (38). For
example, DFA results for the scaling exponent α are expected to
have a SD of ∼±0.05 for data sets that are of the same size as ours.
Because DCCA is strongly related to DFA, the internal errors of
DCCA and DFA are expected to be of a comparable size.

Results
A representative example of the findings from a recording of
two professional musicians, A and B, playing periodic beats in
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Fig. 1. (Top) Two professional musicians A and B synchronizing their beats:
comparison of experiments (A–C) with MICS model (D–F). (A) The IBIs of
1,134 beats of musician A (black curve) and B (blue curve, offset by 0.1 s for
clarity) exhibit slowly varying trends and a tempo increase from 133 to 182
beats per minute. (B and E) The gPSD of time series IA, IB shows LRC as-
ymptotically for small f and anticorrelations for large f separated by a vertex
of the curve at f ∼ 0.1fNyquist (7). (C) Evidence of LRCC between IA and IB,
DCCA exponent is δ = 0.69. (D–F) The MICS model for βA = βB = 0.85, n =
1,133 predicts δ = 0.74, in excellent agreement with the experimental data. A
global trend extracted from A was added to the curve for illustration. Other
parameters as in Fig. 2 A and B.
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synchrony (task type Ia) is shown in Fig. 1. Evidence for LRCCs
between IA and IB on timescales up to the total recording time is
reported in Fig. 1C with DCCA exponent δ = 0.69 ± 0.05. The
two subjects are rhythmically bound together on a timescale up
to several minutes, and the generation of the next beat of one
subject depends on all previous beat intervals of both subjects in
a scale-free manner. LRCCs were found in all performances of
both laypeople and professionals, when two subjects were syn-
chronizing simple rhythms (Fig. 2C). Thus, rhythmic interaction
can be seen as a scale-free process. In contrast, when a single
subject is synchronizing his left and right hands (task type II), no
significant LRCCs were observed (Fig. 2C), suggesting that the
interaction of two complex systems is a necessary prerequisite for
rhythmic binding. However, further research may clarify whether
different types of two-handed play in single individuals can
similarly lead to LRCCs between the two hands.
What do the correlations between interbeat intervals look like in

sequential recordings (task type Ib), where the musicians are
recorded one after another? Surprisingly, we also found scale-free
cross-correlations in sequential recordings (green circles in Fig. 2C),
which is reproduced in the MICS model. Therefore, even though
a wide class of pop and rock songs are currently recorded se-
quentially in recording studios, they do potentially contain LRCCs
(and thus exhibit scale-free coupling) between individual tracks.
We identify two distinct regions in the PSD of the interbeat

intervals separated by a vertex of the curve at a characteristic
frequency fc ∼ 0.1fNyquist (Fig. 1B and SI Text): (i) The small
frequency region asymptotically exhibits long-range correlations.
This region covers long periods of time up to the total recording

time. (ii) The high-frequency region exhibits short-range anti-
correlations. This region translates to short timescales. These
two regions were first described in single-subjects’ finger-tapping
without a metronome (7). Because these two regions are observed
in the entire data set (i.e., in all 57 recorded time series across all
tasks), this finding suggests that these regions are persistent when
musicians interact. Fig. 1E shows that the MICS model reproduces
both regions and fc for interacting complex systems.
The two subjects potentially perceive the deviations dn = tA,n − tB,n

between their beats. The DFA exponent α = 0.72 for the time
series dn indicates long-range correlations in the deviations (aver-
aging over the entire data set, we find α= 0:73± 0:11). In Fig. 3A
the average deviation is dn =−30:6 ms, which may indicate that
musician A led and B followed. An analysis how the scaling expo-
nents differ in cases when no obvious leader–follower relation is
observed can be found in SI Text.

MICS Model
What is the origin of the scale-free cross-correlations? In algorithms
generating LRCCs, such as a two-component autoregressive frac-
tionally integrated moving average (ARFIMA) process (35), the
n’th element of the time series is essentially generated by a sto-
chastic term plus a weighted sum over all previous elements (see
Eq. 4 in Materials and Methods). This weighted sum is also inherent
in other well-known long-memory processes, such as fractional
Brownian motion. Although these statistical processes are widely
applied in finance, climate analysis, etc., a weighted sum over all
previous elements does not appear to be (physiologically) mean-
ingful in many cases, including our case, because it requires explicit
memory for these elements. In fact, it is highly unlikely that each
subject has declarative memory for hundreds of interbeat intervals
played in the preceding minutes. Hence, the occurrence of LRCCs
when musicians synchronize rhythms is surprising. Moreover, our
experimental results deviate strongly from the analytical prediction
based on two-component ARFIMA (dashed line in Fig. 2C), where
δARFIMA = (αA + αB)/2 with DFA (Hurst) exponents αA, αB (35). In
the following, a model for MICS will be introduced (see ref. 39 for
a related model based on an activation-threshold mechanism),
where LRCCs emerge dynamically from a local interaction.
Gilden et al. (7) presented a model in which the generation of

temporal intervals by a single person is composed of two parts: an
internal clock and a motor program associated with moving a fin-
ger or limb. The delay of the motor program is given by Gaussian
white noise ξn. The internal clock generates beat intervals Cn
where the PSD consists of 1/f noise (7) [which as a first step we
generalize to 1/fβ noise with 0 < β < 2 to account for recent
studies, where a range of power law exponents were found (3, 4)].
The following observation is built into the MICS model: When

two subjects A and B are synchronizing a rhythm, each person
attempts to (partly) compensate for the deviations dn = tA,n − tB,n
perceived between the two n’th beats when generating the n + 1’th
beat. We propose the following model for MICS:

IA;n = σACA;n +T + ξA;n − ξA;n−1 −WAdn−1
IB;n = σBCB;n +T + ξB;n − ξB;n−1 +WBdn−1;

[1]

where CA,n and CB,n are Gaussian-distributed 1/fβ noise time
series with exponents 0 < βA,B < 2, and T is the mean beat in-
terval. We set d0 = 0. The coupling strengths 0 < WA,B < 2 de-
scribe the rate of compensation of a deviation in the generation of
the next beat. In the limitWA =WB = 0 and βA = βB = 1, the MICS
model reduces to the Gilden model (7). The MICS model diverges
for WA + WB ≥ 2, i.e., when subjects are overcompensating.
Anticorrelations on short timescales arise from the term

−ξn−1: a long interbeat interval is likely followed by a short one
and vice versa to maintain a given tempo (7), which offers an
explanation for the two regions in the PSD of the interbeat inter-
vals in Fig. 1B. Because the delay of the motor program has no
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Fig. 2. (A) Evidence of scale-free cross-correlations in the MICS model. (B)
The PSD of IA (and IB) shows two regions: LRC asymptotically for small f with
exponent β(IA) = 0.86 ∼ max(βA, βB) and anticorrelations for large f. Other
parameters (A and B): n = 217, βA = βB = 0.85, coupling WA = WB = 0.5, and
σA = σB = 6. (C) Excellent agreement is found between the predicted δ of
the MICS model and tasks Ia (simultaneous recordings, marked by red circles)
and Ib (sequential recordings; green circles). For each DFA (Hurst) exponent
αA = αB ≡ α, 100 time series of length n = 2,048 were generated with the
MICS model, and δ was calculated for all power law estimates with Pearson
correlation coefficient R > 0.95 (for α ≥ 0.9 all realizations fulfilled this cri-
terion). In contrast, the ARFIMAmodel (dashed line) deviates strongly for α >
0.75 from the experiments (tasks Ia and Ib). Recordings of single subjects
(tasks II) are consistent with absence of LRCC, i.e., δ = 0.5 (black line).
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long-term memory, its effect decays exponentially over time; hence,
the anticorrelations are only seen on short timescales, whereas
the long-time behavior is given by the long-range correlated clock
noise. The relative strength of clock noise over motor noise is
given by σA and σB and can be extracted from the slope of the
anticorrelations in IA and IB for high f: the larger σA the smaller
the anticorrelations in IA (7). One would expect the anti-
correlations to decrease when every other beat is neglected. In-
deed, by selecting all odd number terms {I2n−1} (or the even
number terms), the short-range anticorrelations in the PSD are
significantly reduced (both in the MICS model and in the data)
and can even vanish if clock noise dominates (i.e., for large σA,
σB). LRCCs are significantly reduced when selecting only every
other element of the time series.
A comparison of the MICS model (Fig. 1 D–F) with our

experiments (Fig. 1 A–C) shows excellent agreement. The vertex
at the characteristic frequency fc in the PSD is reproduced by the
MICS model (Fig. 1 B and E).
How do scale-free cross-correlations emerge in the MICS model?

The deviations dn, which the musicians perceive and adapt to, can
be written as a sum over all previous interbeat intervals

dn = tA;n − tB;n =
Xn

j=1

�
IA; j − IB; j

�
; [2]

thus involving all previous elements of the time series of IBIs of
both musicians. Therefore, the MICS model suggests that scale-
free coupling of the two subjects emerges mainly through the
adaptation to deviations between their beats.
What are predictions of the MICS model? (P1) Emergence of

LRCCs (Fig. 2A): The predicted DCCA exponents δ, which are
not a parameter of the model, are in excellent agreement with
the experiments (Fig. 2C). (P2) Asymptotically, the DFA scaling
exponents αA,B of the interbeat intervals are determined by the
“clock” with the strongest persistence: αA = αB = [max(βA, βB) + 1]/2.
This result is valid for long time series of length N J 105 (Fig.
2B). Surprisingly, even when turning off, say, clock A (i.e.,
βA = 0), the long-time behavior of both IA and IB is asymptoti-
cally given by the exponent of the long-range correlated clock B
(and vice versa) for large N. Thus, the musician with the higher
scaling exponent determines the partner’s long-term memory in
the IBIs. However, in experiments the exponents can differ
significantly in shorter time series of length N ∼ 1,000, which can
be seen by comparing the PSD exponents in Figs. 1E and 2B. (P3)
Sequential recordings (WA = 0 and 0 < WB < 2): The MICS
model predicts LRCC for sequential recordings in agreement
with the experimental findings (green circles in Fig. 2C). (P4) The

DFA exponent of the time series of deviations dn is given by
α = [max(βA, βB) + 1]/2 in the limit N → ∞. However, the DFA
exponents of the time series of deviations can significantly differ
for finite lengths N ∼ 1,000 beats. A sample sequence is shown in
Fig. 3B.
A possible extension of the MICS model is to consider variable

coupling strengths W = W(dn). Because larger deviations are
likely to be perceived more distinctly, one possible scenario is to
introduce couplingsW that increase with dn. For example,Wmay
increase when large deviations such as glitches are perceived. In
cases where the coupling strengthsWA orWB depend on dn, Eq. 1
becomes nonlinear in dn.

Application: Musical Coupling
The observation of scale-free (fractal) musical coupling can be
used to couple the interbeat intervals of two or more audio
tracks, i.e., to imitate the generic interaction between musicians.
Additional temporal deviations from the exact beat pattern,
which, e.g., are introduced by intention by a musician to inter-
pret a musical piece, are not modeled by the procedure below.
Though the interbeat intervals are modified, all other character-
istics, such as pitch, timbre, and loudness, remain unchanged.
Introducing musical coupling in two or more sequences is re-

ferred to as “group-humanizing.”More than two audio tracks can
be group-humanized by having each additional track responding
to, e.g., the average of all other tracks’ deviations. In addition, it
is possible to group-humanize sequences by having a computer
respond to or follow a musician in a “humanized” manner. For
example, a musician can play a MIDI instrument and the com-
puter instruments adapt to his unique input.
The procedure to introduce musical coupling in two audio

tracks A and B is demonstrated using an instrumental version of
the song “Billie Jean” by Michael Jackson. This song was chosen
because drum and bass tracks consist of a simple rhythmic and
melodic pattern that is repeated continuously throughout the
entire song; this leads to a steady beat in drum and bass, which is
well suited to demonstrate their generic mutual interaction. For
simplicity, we merge all instruments into two tracks: track A
includes all drum and keyboard sounds, and track B includes the
bass. The interbeat intervals of tracks A and B read IA,t = Xt + T
and IB,t = Yt + T, where T is the average interbeat interval given
by the tempo (here, T = 256 ms, which corresponds to 234 beats
per minute in the eighth notes). If the time series Xt (blue curve
in Fig. 4, Upper) and Yt (black curve) are long-range cross-corre-
lated, we obtain musical coupling between drum and bass tracks.
We modified a MIDI version of the song Billie Jean following
three different procedures (audio samples can be found in SI
Text). (i) Musical coupling (also called group-humanizing): Xt
and Yt contain LRCCs using a two-component ARMIFA pro-
cess; (ii) “humanizing” the tracks separately: Xt and Yt each
contain 1/fβ noise, but are statistically independent; and (iii)
randomizing: Xt and Yt consist of Gaussian white noise.
For all three procedures, a SD of 10 ms was chosen for Xt and

Yt. Parameters are δ = 0.9 for musical coupling and β = 0.9 for
humanizing. The time series of deviations Xt and Yt for musical
coupling are shown in Fig. 4. The measured DCCA exponent
reads δ = 0.93 (in agreement with the analytical value 0.9 within
margins of error) showing LRCC. For separately humanized
sequences, however, we expect absence of LRCC. Indeed, the
detrended covariance of Xt and Yt oscillates around zero (SI Text),
i.e., no LRCCs are found (35). Other processes that generate
LRCC could also be used to induce musical coupling, including
the MICS model (Eq. 1). Randomizing is implemented in pro-
fessional audio editing software, whereas a group-humanizer
program for coupling MIDI tracks is available from www.nld.ds.
mpg.de/∼holgerh/download_software.html.
Our procedure of introducing musical coupling of a pair of

sequences (IA,t, IB,t) reduces to humanizing the sequences IA and IB
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Fig. 3. The time series of deviations dn (Eq. 2) between the beats of two
synchronizing individuals contain LRC both (A) in the experiment and (B) in
the MICS model. (A) As a representative example, we show the dn obtained
from the interbeat intervals IA,n and IB,n of the two professional musicians in
Fig. 1A. Average deviation is dn =−30:6 ms. The DFA exponent reads α =
0.72, indicating long-range correlations. (B) Deviations dn simulated with the
MICS model (Eq. 1) with DFA exponent α = 0.89. Other parameters are n =
1,133 data points, βA = βB = 0.85, σA = σB = 6, WA = WB = 0.5.
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independently in the limit of vanishing coupling (WA = WB = 0).
Therefore, humanizing the tracks independently can be seen as
a special case of musical coupling. Because humanizing is pre-
ferred by listeners over randomizing (3, 5), we expect that the
coupled/humanized samples (nos. 1 and 2) will be preferred over
the randomized sample (no. 3). Audio sample 1 imitates the inter-
play of two musicians, whereas sample 2 only reflects the statistics of
the play of single musicians that do not interact with each other.

Conclusion
We showed that rhythmic synchronization between individuals
(both musicians and laypeople) exhibits long-term memory of
the partner’s interbeat intervals up to several minutes for which
an explanation is suggested in a physiologically motivated sto-
chastic model for MICS. The MICS model suggests that scale-
free coupling of the two subjects emerges mainly through the
adaptation to deviations between their beats.
The MICS model may be applicable to other mutually inter-

acting complex systems, such as synchronization phenomena and
interdependencies in finance, heartbeats, EEG signals (15, 17),
or bird flocks (20), where the origin of scale-free cross-correla-
tions and resulting collective behavior is often elusive. On the
methods side, to avoid artifacts in the PSD of slowly varying non-
stationary time series, our analysis suggests prior global detrending.
We demonstrated that the observed memory phenomenon in
rhythmic synchronization can be imitated by fractal coupling of
audio tracks and thus applied in electronic music. Though this
study complements our understanding of timing and synchroni-
zation at the neural networks level, we hope that this work fur-
ther stimulates the interdisciplinary study of neuronal correlates
of timing and synchronization at the interbrain level, e.g., based
on combined audio, EEG, or fMRI measurements.

Ethics Statement. This study was reviewed by the Harvard Uni-
versity Committee on the Use of Human Subjects in Research,
which determined that it meets the criteria for exemption to
Institutional Review Board approval. Informed consent was ob-
tained from the healthy adult subjects.

Materials and Methods
Globally Detrended Power Spectral Density. To analyze the PSD of slowly
varying nonstationary time series, we propose the gPSD method, which is
a modification of the PSD method and involves prior global detrending; it
extends previous approaches where linear global detrending (39) was used
by including higher order polynomials of degree k. The gPSD method con-
sists of the following steps, given a time series Xn of length N: (i) Global
detrending of Xn with a polynomial of degree k = 1. . .5. (ii) Divide Xn in
m segments of length N/m. (iii) Calculating the power spectral density
prðfÞ=

��FFT
�
XðrÞ
n
���2 in each (sliding of shifted) window of size N/m, where FFT

denotes the fast Fourier transform, including zero padding, and r labels the
different windows. (iv) Averaging the power spectra p(f) =〈pr(f)〉and cal-
culating the power spectral exponent of p(f) by means of a least-squares fit.
If not noted otherwise, we used k = 2, m = 8 and shifted the windows by
N/(2m) thus obtaining r = 1 . . . 2m −1 power spectra for each time series. The
fitting range for gPSD is [fmin, fc], where fmin = 1/(2N) is the smallest possible
power spectral frequency, and the position of the characteristic frequency
fc in the PSD was determined automatically.

Detrended Fluctuation Analysis. A well-known method tailored for studying
slowly varying nonstationary time series is DFA (for details, see refs. 36 and
37). The DFA fitting range used here reads [smin, N/4], where smin was de-
termined automatically by minimizing the error of a least-squares fit (quantified
by Pearson’s correlation coefficient). However, in this work we are not only in-
terested in the DFA exponent itself but also in the shape of the PSD, which
exhibits two distinct regions separated by a vertex at the characteristic frequency
fc. DFA shows a much more smooth transition between the two regions;
therefore, gPSD is not only a valuable independent measure for long-range
correlations, but also vital to characterize the scaling behavior in both regions.

Detrended Cross-Correlations Analysis. DCCA has been developed to analyze
the cross-correlations between two nonstationary time series (17). As sug-
gested in ref. 35, we added global detrending with a polynomial of degree
k as initial step before DCCA. Global detrending proved to be a crucial step
to calculate the DCCA exponent of the nonstationary time series in our data.
Without global detrending much larger DCCA exponents are obtained, i.e.,
spurious LRCC are detected that reflect global trends. Given two time series Xn,
Xn′ , where n = 1 . . . N. The DCCA method including prior global detrending
consists of the following steps: (i) Global detrending: fitting a polynomial of
degree k to Xn and a polynomial to Xn′ , where typically k = 1 . . . 5. We used k = 3
and carefully checked that the obtained DCCA scaling exponents did not change
significantly with k. (ii) Integrating the time series Rn =

Pn
i=1Xn and Rn′ =

Pn
i=1Xn′ .

(iii) Dividing the series into windows of size s. Least-squares fit ~Rn and ~Rn for
both time series in each window. (iv) Calculating the detrended covariance

FDCCAðsÞ= 1
Ns − 1

XNs

k=1

�
Rk − ~Rk

��
Rk′ − ~Rk′

�
, [3]

where Ns is the number of windows of size s. For fractal scaling, FDCCA(s) ∝ sδ

with 0.5 < δ < 1.5. Absence of LRCC is indicated by fluctuations of FDCCA(s)
around zero. If, however, the detrended covariance FDCCA(s) changes signs and
fluctuates around zero as a function of the timescale s, LRCCs are absent.
When setting Xn =Xn′ and without global detrending (step 1), DFA is obtained.
In this respect, DFA can be seen as a detrended autocorrelation analysis.

Two-Component ARFIMA. A two-component ARFIMA process has been pro-
posed that generates two time series x1,2, which exhibit LRCC (15, 17). The
process is defined by

Xt =
X∞

n=1

wnðαA − 0:5Þxt−n

Yt =
X∞

n=1

wnðαB − 0:5Þyt−n

xt = ½WXt + ð1−WÞYt �+ ξt,A

yt = ½ð1−WÞXt +WYt �+ ξt,B, [4]

with Hurst exponents 0.5 < αA,B < 1, weights wn(d ) = dΓ(n − d )/(Γ(1 − d )Γ
(n + 1)), Gaussian white noise ξt,A, and ξt,B and gamma function Γ. The
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Fig. 4. (Upper) Scale-free coupling of two audio tracks: The deviations from
their respective positions (e.g., given by a metronome) are shown in the
drum track (upper blue curve, offset by 50 ms for clarity) and bass track
(lower black curve) to introduce musical coupling. When an instrument is
silent on a beat, the corresponding deviation is skipped. The time series each
of length n = 1,120 were generated with a two-component ARFIMA process
with Hurst exponents αA = αB = 0.9 and coupling constant W = 0.5. (Lower)
Excerpt of the first four bars of the song “Billie Jean” by Michael Jackson.
Because there is a drum sound on every beat, all 1,120 deviations are added
to the drum track, whereas in the first two bars the bass pauses.
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coupling constant W ranges from 0.5 (maximum coupling between xt
and yt) to 1 (no coupling). It has been shown analytically that the cross-
correlation exponent is given by δARFIMA = (αA + αB)/2 (dashed line in Fig.
2C). An example of two coupled time series generated with a two-
component ARFIMA process is shown in Fig. 4.
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